Amazon cover image
Image from Amazon.com
Image from Coce
Image from OpenLibrary
Custom cover image
Custom cover image

Water-resources engineering / David A. Chin.

By: Material type: TextTextPublication details: Upper Saddle River, N.J. : Pearson Education, c2013.Edition: 3rd edDescription: 939 p. : ill. ; 26 cmISBN:
  • 0132833212 (alk. paper)
  • 9780132833219 (alk. paper)
Subject(s): DDC classification:
  • 627 23
LOC classification:
  • TC 160 C52 2013
  • TC160 C52 2013
Contents:
Machine generated contents note: 1.Introduction -- 1.1.Water-Resources Engineering -- 1.2.The Hydrologic Cycle -- 1.3.Design of Water-Resource Systems -- 1.3.1.Water-Control Systems -- 1.3.2.Water-Use Systems -- 1.3.3.Supporting Federal Agencies in the United States -- Problem -- 2.Fundamentals of Flow in Closed Conduits -- 2.1.Introduction -- 2.2.Single Pipelines -- 2.2.1.Steady-State Continuity Equation -- 2.2.2.Steady-State Momentum Equation -- 2.2.3.Steady-State Energy Equation -- 2.2.3.1.Energy and hydraulic grade lines -- 2.2.3.2.Velocity profile -- 2.2.3.3.Head losses in transitions and fittings -- 2.2.3.4.Head losses in noncircular conduits -- 2.2.3.5.Empirical friction-loss formulae -- 2.2.4.Water Hammer -- 2.3.Pipe Networks -- 2.3.1.Nodal Method -- 2.3.2.Loop Method -- 2.3.3.Application of Computer Programs -- 2.4.Pumps -- 2.4.1.Affinity Laws -- 2.4.2.Pump Selection -- 2.4.2.1.Commercially available pumps -- 2.4.2.2.System characteristics -- 2.4.2.3.Limits on pump location -- 2.4.3.Multiple-Pump Systems -- 2.4.4.Variable-Speed Pumps -- Problems -- 3.Design of Water-Distribution Systems -- 3.1.Introduction -- 3.2.Water Demand -- 3.2.1.Per-Capita Forecast Mode1 -- 3.2.1.1.Estimation of per-capita demand -- 3.2.1.2.Estimation of population -- 3.2.2.Temporal Variations in Water Demand -- 3.2.3.Fire Demand -- 3.2.4.Design Flows -- 3.3.Components of Water-Distribution Systems -- 3.3.1.Pipelines -- 3.3.1.1.Minimum size -- 3.3.1.2.Service lines -- 3.3.1.3.Pipe materials -- 3.3.2.Pumps -- 3.3.3.Valves -- 3.3.4.Meters -- 3.3.5.Fire Hydrants -- 3.3.6.Water-Storage Reservoirs -- 3.4.Performance Criteria for Water-Distribution Systems -- 3.4.1.Service Pressures -- 3.4.2.Allowable Velocities -- 3.4.3.Water Quality -- 3.4.4.Network Analysis -- 3.5.Building Water-Supply Systems -- 3.5.1.Specification of Design Flows -- 3.5.2.Specification of Minimum Pressures -- 3.5.3.Determination of Pipe Diameters -- Problems -- 4.Fundamentals of Flow in Open Channels -- 4.1.Introduction -- 4.2.Basic Principles -- 4.2.1.Steady-St
Note continued: 12.3.4.Vegetated Filter Strips -- 12.3.5.Bioretention Systems -- 12.3.6.Exfiltration Trenches -- 12.3.6.1.General design guidelines -- 12.3.6.2.Design for flood control -- 12.3.6.3.Design for water-quality control -- 12.3.7.Subsurface Exfiltration Galleries -- 12.4.Selection of SCMs for Water-Quality Control -- 12.4.1.Nonstructural SCMs -- 12.4.2.Structural SCMs -- 12.4.3.Other Considerations -- 12.5.Major Drainage System -- Problems -- 13.Estimation of Evapotranspiration -- 13.1.Introduction -- 13.2.Penman-Monteith Equation -- 13.2.1.Aerodynamic Resistance -- 13.2.2.Surface Resistance -- 13.2.3.Net Radiation -- 13.2.3.1.Shortwave radiation -- 13.2.3.2.Longwave radiation -- 13.2.4.Soil Heat Flux -- 13.2.5.Latent Heat of Vaporization -- 13.2.6.Psychrometric Constant -- 13.2.7.Saturation Vapor Pressure -- 13.2.8.Vapor-Pressure Gradient -- 13.2.9.Actual Vapor Pressure -- 13.2.10.Air Density -- 13.3.Application of the PM Equation -- 13.4.Potential Evapotranspiration -- 13.5.Reference Evapotranspiration -- 13.5.1.FAO56-Penman-Monteith Method -- 13.5.2.ASCE Penman-Monteith Method -- 13.5.3.Evaporation Pans -- 13.5.4.Empirical Methods -- 13.6.Actual Evapotranspiration -- 13.6.1.Index-of-Dryness Method -- 13.6.2.Crop-Coefficient Method -- 13.6.3.Remote Sensing -- 13.7.Selection of ET Estimation Method -- Problems -- 14.Fundamentals of Groundwater Hydrology I: Governing Equations -- 14.1.Introduction -- 14.2.Darcy's Law -- 14.2.1.Hydraulic Conductivity -- 14.2.1.1.Empirical formulae -- 14.2.1.2.Classification -- 14.2.1.3.Anisotropic properties -- 14.2.1.4.Stochastic properties -- 14.3.General Flow Equation -- 14.4.Two-Dimensional Approximations -- 14.4.1.Unconfined Aquifers -- 14.4.2.Confined Aquifers -- 14.5.Flow in the Unsaturated Zone -- Problems -- 15.Fundamentals of Groundwater Hydrology II: Applications -- 15.1.Introduction -- 15.2.Steady-State Solutions -- 15.2.1.Unconfined Flow Between Two Reservoirs -- 15.2.2.Well in a Confined Aquifer -- 15.2.3.Well in an Unconfined Aquifer -- 15.2.4.Well in
Summary: Water-Resources Engineering provides comprehensive coverage of hydraulics, hydrology, and water-resources planning and management. Presented from first principles, the material is rigorous, relevant to the practice of water resources engineering, and reinforced by detailed presentations of design applications. Prior knowledge of fluid mechanics and calculus (up to differential equations) is assumed.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Shelving location Call number Status Date due Barcode
Book Book TUP Manila Library General Circulation Section-GF TC 160 C52 2013 (Browse shelf(Opens below)) Available P00030312

Includes bibliographical references (p. 854-911) and index.

Machine generated contents note: 1.Introduction -- 1.1.Water-Resources Engineering -- 1.2.The Hydrologic Cycle -- 1.3.Design of Water-Resource Systems -- 1.3.1.Water-Control Systems -- 1.3.2.Water-Use Systems -- 1.3.3.Supporting Federal Agencies in the United States -- Problem -- 2.Fundamentals of Flow in Closed Conduits -- 2.1.Introduction -- 2.2.Single Pipelines -- 2.2.1.Steady-State Continuity Equation -- 2.2.2.Steady-State Momentum Equation -- 2.2.3.Steady-State Energy Equation -- 2.2.3.1.Energy and hydraulic grade lines -- 2.2.3.2.Velocity profile -- 2.2.3.3.Head losses in transitions and fittings -- 2.2.3.4.Head losses in noncircular conduits -- 2.2.3.5.Empirical friction-loss formulae -- 2.2.4.Water Hammer -- 2.3.Pipe Networks -- 2.3.1.Nodal Method -- 2.3.2.Loop Method -- 2.3.3.Application of Computer Programs -- 2.4.Pumps -- 2.4.1.Affinity Laws -- 2.4.2.Pump Selection -- 2.4.2.1.Commercially available pumps -- 2.4.2.2.System characteristics -- 2.4.2.3.Limits on pump location -- 2.4.3.Multiple-Pump Systems -- 2.4.4.Variable-Speed Pumps -- Problems -- 3.Design of Water-Distribution Systems -- 3.1.Introduction -- 3.2.Water Demand -- 3.2.1.Per-Capita Forecast Mode1 -- 3.2.1.1.Estimation of per-capita demand -- 3.2.1.2.Estimation of population -- 3.2.2.Temporal Variations in Water Demand -- 3.2.3.Fire Demand -- 3.2.4.Design Flows -- 3.3.Components of Water-Distribution Systems -- 3.3.1.Pipelines -- 3.3.1.1.Minimum size -- 3.3.1.2.Service lines -- 3.3.1.3.Pipe materials -- 3.3.2.Pumps -- 3.3.3.Valves -- 3.3.4.Meters -- 3.3.5.Fire Hydrants -- 3.3.6.Water-Storage Reservoirs -- 3.4.Performance Criteria for Water-Distribution Systems -- 3.4.1.Service Pressures -- 3.4.2.Allowable Velocities -- 3.4.3.Water Quality -- 3.4.4.Network Analysis -- 3.5.Building Water-Supply Systems -- 3.5.1.Specification of Design Flows -- 3.5.2.Specification of Minimum Pressures -- 3.5.3.Determination of Pipe Diameters -- Problems -- 4.Fundamentals of Flow in Open Channels -- 4.1.Introduction -- 4.2.Basic Principles -- 4.2.1.Steady-St

Note continued: 12.3.4.Vegetated Filter Strips -- 12.3.5.Bioretention Systems -- 12.3.6.Exfiltration Trenches -- 12.3.6.1.General design guidelines -- 12.3.6.2.Design for flood control -- 12.3.6.3.Design for water-quality control -- 12.3.7.Subsurface Exfiltration Galleries -- 12.4.Selection of SCMs for Water-Quality Control -- 12.4.1.Nonstructural SCMs -- 12.4.2.Structural SCMs -- 12.4.3.Other Considerations -- 12.5.Major Drainage System -- Problems -- 13.Estimation of Evapotranspiration -- 13.1.Introduction -- 13.2.Penman-Monteith Equation -- 13.2.1.Aerodynamic Resistance -- 13.2.2.Surface Resistance -- 13.2.3.Net Radiation -- 13.2.3.1.Shortwave radiation -- 13.2.3.2.Longwave radiation -- 13.2.4.Soil Heat Flux -- 13.2.5.Latent Heat of Vaporization -- 13.2.6.Psychrometric Constant -- 13.2.7.Saturation Vapor Pressure -- 13.2.8.Vapor-Pressure Gradient -- 13.2.9.Actual Vapor Pressure -- 13.2.10.Air Density -- 13.3.Application of the PM Equation -- 13.4.Potential Evapotranspiration -- 13.5.Reference Evapotranspiration -- 13.5.1.FAO56-Penman-Monteith Method -- 13.5.2.ASCE Penman-Monteith Method -- 13.5.3.Evaporation Pans -- 13.5.4.Empirical Methods -- 13.6.Actual Evapotranspiration -- 13.6.1.Index-of-Dryness Method -- 13.6.2.Crop-Coefficient Method -- 13.6.3.Remote Sensing -- 13.7.Selection of ET Estimation Method -- Problems -- 14.Fundamentals of Groundwater Hydrology I: Governing Equations -- 14.1.Introduction -- 14.2.Darcy's Law -- 14.2.1.Hydraulic Conductivity -- 14.2.1.1.Empirical formulae -- 14.2.1.2.Classification -- 14.2.1.3.Anisotropic properties -- 14.2.1.4.Stochastic properties -- 14.3.General Flow Equation -- 14.4.Two-Dimensional Approximations -- 14.4.1.Unconfined Aquifers -- 14.4.2.Confined Aquifers -- 14.5.Flow in the Unsaturated Zone -- Problems -- 15.Fundamentals of Groundwater Hydrology II: Applications -- 15.1.Introduction -- 15.2.Steady-State Solutions -- 15.2.1.Unconfined Flow Between Two Reservoirs -- 15.2.2.Well in a Confined Aquifer -- 15.2.3.Well in an Unconfined Aquifer -- 15.2.4.Well in

Water-Resources Engineering provides comprehensive coverage of hydraulics, hydrology, and water-resources planning and management. Presented from first principles, the material is rigorous, relevant to the practice of water resources engineering, and reinforced by detailed presentations of design applications. Prior knowledge of fluid mechanics and calculus (up to differential equations) is assumed.

There are no comments on this title.

to post a comment.



© 2025 Technological University of the Philippines.
All Rights Reserved.

Powered by Koha