000 02022nam a22003257a 4500
003 OSt
005 20250714181601.0
008 250714b |||||||| |||| 00| 0 eng d
040 _aTUPM
_bEnglish
_cTUPM
_dTUPM
_erda
050 _aBTH QA 76
_bH57 2025
100 _aHipulan, John Gerald M.
_eauthor
245 _aProhealth suite:
_bPtb portal with yolo11 capabilities/
_cJohn Gerald M. Hipulan, Davis Louis A. Icaro, Kyle Gabriel Kristofferson S. Maraya, Aaron Paul M. Sicio, and Paolo Miguel L. Sunga.--
260 _aManila:
_bTechnological University of the Philippines,
_c2025.
300 _aix, 77pages:
_c29cm.
336 _2rdacontent
337 _2rdamedia
338 _2rdacarrier
500 _aBachelor's thesis
502 _aCollege of Science.--
_bBachelor of science in computer science:
_cTechnological University of the Philippines,
_d2025.
504 _aIncludes bibliographic references and index.
520 _aEarly detection and diagnosis of diseases are critical to improving patient outcomes and reducing mortality rates. This thesis presents the ProHealth Suite, a diagnostic tool that leverages YOLOv11 to detect pleural effusion and cavities—conditions that may indicate probable pulmonary tuberculosis—from medical images, using chest X-rays as the primary input. This research demonstrates the potential of YOLOv11 in automating and improving the accuracy of disease detection, potentially enhancing the early diagnosis process in clinical settings. The ProHealth Suite represents a significant step towards the development of comprehensive, AI-powered diagnostic tools that can be widely implemented in healthcare systems worldwide.
650 _aSmart diagnostics
650 _aAI-powered TB detection
650 _aReal-time health screening
700 _aIcaro, Davis Louis A.
_eauthor
700 _aMaraya, Kyle Gabriel Kristofferson S.
_eauthor
700 _aSicio, Aaron Paul M.
_eauthor
700 _aSunga, Paolo Miguel L.
_eauthor
942 _2lcc
_cBTH COS
_n0
999 _c30326
_d30326