| 000 | 02022nam a22003257a 4500 | ||
|---|---|---|---|
| 003 | OSt | ||
| 005 | 20250714181601.0 | ||
| 008 | 250714b |||||||| |||| 00| 0 eng d | ||
| 040 |
_aTUPM _bEnglish _cTUPM _dTUPM _erda |
||
| 050 |
_aBTH QA 76 _bH57 2025 |
||
| 100 |
_aHipulan, John Gerald M. _eauthor |
||
| 245 |
_aProhealth suite: _bPtb portal with yolo11 capabilities/ _cJohn Gerald M. Hipulan, Davis Louis A. Icaro, Kyle Gabriel Kristofferson S. Maraya, Aaron Paul M. Sicio, and Paolo Miguel L. Sunga.-- |
||
| 260 |
_aManila: _bTechnological University of the Philippines, _c2025. |
||
| 300 |
_aix, 77pages: _c29cm. |
||
| 336 | _2rdacontent | ||
| 337 | _2rdamedia | ||
| 338 | _2rdacarrier | ||
| 500 | _aBachelor's thesis | ||
| 502 |
_aCollege of Science.-- _bBachelor of science in computer science: _cTechnological University of the Philippines, _d2025. |
||
| 504 | _aIncludes bibliographic references and index. | ||
| 520 | _aEarly detection and diagnosis of diseases are critical to improving patient outcomes and reducing mortality rates. This thesis presents the ProHealth Suite, a diagnostic tool that leverages YOLOv11 to detect pleural effusion and cavities—conditions that may indicate probable pulmonary tuberculosis—from medical images, using chest X-rays as the primary input. This research demonstrates the potential of YOLOv11 in automating and improving the accuracy of disease detection, potentially enhancing the early diagnosis process in clinical settings. The ProHealth Suite represents a significant step towards the development of comprehensive, AI-powered diagnostic tools that can be widely implemented in healthcare systems worldwide. | ||
| 650 | _aSmart diagnostics | ||
| 650 | _aAI-powered TB detection | ||
| 650 | _aReal-time health screening | ||
| 700 |
_aIcaro, Davis Louis A. _eauthor |
||
| 700 |
_aMaraya, Kyle Gabriel Kristofferson S. _eauthor |
||
| 700 |
_aSicio, Aaron Paul M. _eauthor |
||
| 700 |
_aSunga, Paolo Miguel L. _eauthor |
||
| 942 |
_2lcc _cBTH COS _n0 |
||
| 999 |
_c30326 _d30326 |
||