000 05636cam a2200361 a 4500
001 0DE8676C002B45348FF3D1F29334F2F2
003 OSt
005 20240722112132.0
008 120615s2013 njum a000 0 eng
010 _a 2012018911
020 _a0132833212 (alk. paper)
020 _a9780132833219 (alk. paper)
040 _aDLC
_beng
_cDLC
_dYDX
_dOCLCO
_dYDXCP
_dBTCTA
_dCDX
_dCUY
_dAU@
_dUPM
_dOCLCF
050 0 _aTC 160
_bC52 2013
050 0 _aTC160
_bC52 2013
082 0 _a627
_223
100 1 _aChin, David A.
245 0 0 _aWater-resources engineering /
_cDavid A. Chin.
250 _a3rd ed.
260 _aUpper Saddle River, N.J. :
_bPearson Education,
_cc2013.
300 _a939 p. :
_bill. ;
_c26 cm.
504 _aIncludes bibliographical references (p. 854-911) and index.
505 0 _aMachine generated contents note: 1.Introduction -- 1.1.Water-Resources Engineering -- 1.2.The Hydrologic Cycle -- 1.3.Design of Water-Resource Systems -- 1.3.1.Water-Control Systems -- 1.3.2.Water-Use Systems -- 1.3.3.Supporting Federal Agencies in the United States -- Problem -- 2.Fundamentals of Flow in Closed Conduits -- 2.1.Introduction -- 2.2.Single Pipelines -- 2.2.1.Steady-State Continuity Equation -- 2.2.2.Steady-State Momentum Equation -- 2.2.3.Steady-State Energy Equation -- 2.2.3.1.Energy and hydraulic grade lines -- 2.2.3.2.Velocity profile -- 2.2.3.3.Head losses in transitions and fittings -- 2.2.3.4.Head losses in noncircular conduits -- 2.2.3.5.Empirical friction-loss formulae -- 2.2.4.Water Hammer -- 2.3.Pipe Networks -- 2.3.1.Nodal Method -- 2.3.2.Loop Method -- 2.3.3.Application of Computer Programs -- 2.4.Pumps -- 2.4.1.Affinity Laws -- 2.4.2.Pump Selection -- 2.4.2.1.Commercially available pumps -- 2.4.2.2.System characteristics -- 2.4.2.3.Limits on pump location -- 2.4.3.Multiple-Pump Systems -- 2.4.4.Variable-Speed Pumps -- Problems -- 3.Design of Water-Distribution Systems -- 3.1.Introduction -- 3.2.Water Demand -- 3.2.1.Per-Capita Forecast Mode1 -- 3.2.1.1.Estimation of per-capita demand -- 3.2.1.2.Estimation of population -- 3.2.2.Temporal Variations in Water Demand -- 3.2.3.Fire Demand -- 3.2.4.Design Flows -- 3.3.Components of Water-Distribution Systems -- 3.3.1.Pipelines -- 3.3.1.1.Minimum size -- 3.3.1.2.Service lines -- 3.3.1.3.Pipe materials -- 3.3.2.Pumps -- 3.3.3.Valves -- 3.3.4.Meters -- 3.3.5.Fire Hydrants -- 3.3.6.Water-Storage Reservoirs -- 3.4.Performance Criteria for Water-Distribution Systems -- 3.4.1.Service Pressures -- 3.4.2.Allowable Velocities -- 3.4.3.Water Quality -- 3.4.4.Network Analysis -- 3.5.Building Water-Supply Systems -- 3.5.1.Specification of Design Flows -- 3.5.2.Specification of Minimum Pressures -- 3.5.3.Determination of Pipe Diameters -- Problems -- 4.Fundamentals of Flow in Open Channels -- 4.1.Introduction -- 4.2.Basic Principles -- 4.2.1.Steady-St
505 0 _aNote continued: 12.3.4.Vegetated Filter Strips -- 12.3.5.Bioretention Systems -- 12.3.6.Exfiltration Trenches -- 12.3.6.1.General design guidelines -- 12.3.6.2.Design for flood control -- 12.3.6.3.Design for water-quality control -- 12.3.7.Subsurface Exfiltration Galleries -- 12.4.Selection of SCMs for Water-Quality Control -- 12.4.1.Nonstructural SCMs -- 12.4.2.Structural SCMs -- 12.4.3.Other Considerations -- 12.5.Major Drainage System -- Problems -- 13.Estimation of Evapotranspiration -- 13.1.Introduction -- 13.2.Penman-Monteith Equation -- 13.2.1.Aerodynamic Resistance -- 13.2.2.Surface Resistance -- 13.2.3.Net Radiation -- 13.2.3.1.Shortwave radiation -- 13.2.3.2.Longwave radiation -- 13.2.4.Soil Heat Flux -- 13.2.5.Latent Heat of Vaporization -- 13.2.6.Psychrometric Constant -- 13.2.7.Saturation Vapor Pressure -- 13.2.8.Vapor-Pressure Gradient -- 13.2.9.Actual Vapor Pressure -- 13.2.10.Air Density -- 13.3.Application of the PM Equation -- 13.4.Potential Evapotranspiration -- 13.5.Reference Evapotranspiration -- 13.5.1.FAO56-Penman-Monteith Method -- 13.5.2.ASCE Penman-Monteith Method -- 13.5.3.Evaporation Pans -- 13.5.4.Empirical Methods -- 13.6.Actual Evapotranspiration -- 13.6.1.Index-of-Dryness Method -- 13.6.2.Crop-Coefficient Method -- 13.6.3.Remote Sensing -- 13.7.Selection of ET Estimation Method -- Problems -- 14.Fundamentals of Groundwater Hydrology I: Governing Equations -- 14.1.Introduction -- 14.2.Darcy's Law -- 14.2.1.Hydraulic Conductivity -- 14.2.1.1.Empirical formulae -- 14.2.1.2.Classification -- 14.2.1.3.Anisotropic properties -- 14.2.1.4.Stochastic properties -- 14.3.General Flow Equation -- 14.4.Two-Dimensional Approximations -- 14.4.1.Unconfined Aquifers -- 14.4.2.Confined Aquifers -- 14.5.Flow in the Unsaturated Zone -- Problems -- 15.Fundamentals of Groundwater Hydrology II: Applications -- 15.1.Introduction -- 15.2.Steady-State Solutions -- 15.2.1.Unconfined Flow Between Two Reservoirs -- 15.2.2.Well in a Confined Aquifer -- 15.2.3.Well in an Unconfined Aquifer -- 15.2.4.Well in
520 _aWater-Resources Engineering provides comprehensive coverage of hydraulics, hydrology, and water-resources planning and management. Presented from first principles, the material is rigorous, relevant to the practice of water resources engineering, and reinforced by detailed presentations of design applications. Prior knowledge of fluid mechanics and calculus (up to differential equations) is assumed.
650 1 0 _aHydraulics.
650 1 0 _aHydrology.
650 1 0 _aWater resources development.
650 1 0 _aWaterworks.
942 _2lcc
_cBK
999 _c6129
_d6129